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a b s t r a c t

This paper presents experimental data and modeling for membrane-based treatment of leather plant
effluent. The effluent coming out from the various upstream steps of leather plant are combined and pres-
sure driven membrane processes like nanofiltration (NF) and reverse osmosis (RO) are undertaken after
a pretreatment consisting of gravity settling and coagulation followed by cloth filtration. Performances
of two NF membranes (200 and 400 molecular weight cut offs (MWCO)) are evaluated. Experiments are
conducted using an unstirred batch cell. It is observed that a combined operation of NF using 400 MWCO
membrane followed by RO operation is better option compared to a single operation of NF with 200 MWCO
(membrane). After selection of proper NF membrane from batch experimental data, the entire membrane
separation scheme is validated by conducting experiments using a cross flow cell. A detailed parametric
study for cross flow experiment is investigated and the suitable operating trans-membrane pressure and

the cross flow rates are found out (experimentally) in both NF and RO. The experimental flux data are cor-
related and analyzed using artificial neural network (ANN). A multi-layered feed-forward network with
back-propagation algorithm is used for training of ANN models. Two artificial neural network models
with input, output and hidden layer(s) are used to predict the flux data for both the batch and cross flow
run. A good agreement has been observed using the ANN model with the experimental flux data with
a deviation not more than 1% for most of the cases considered. The BOD and COD values of the finally

ithin
treated effluent are well w

. Introduction

Around 70,000 tones of hides and skins are processed each
ear in India, releasing ∼75,000 m3/day of the waste water [1].
he main ingredients are sodium chloride, sodium sulfide, lime,
hromium, protein, fats, etc. [2]. Small-scale tanneries dispose
he effluents from the “beam house” through a common header
irectly to the sewage/river stream. In search of “cleaner technol-
gy”, the membrane-based processes are successfully used for the
reatment of leather plant effluent. Cassano et al. [3] presented a
etailed survey of the applications of the membrane-based pro-
esses, e.g., microfiltration (MF), ultrafiltration (UF), nanofiltration
NF) and reverse osmosis (RO) on various effluent streams of the

beam house”. Application of UF to the effluent from the liming [4],
egreasing [5,6] have been reported. The use of UF and RO to treat
he soaking, deliming/bating and pickling effluents are proposed
3]. The removal and reuse of dyes from dyeing unit is also reported

∗ Corresponding author. Tel.: +91 361 2582262; fax: +91 361 2582291.
E-mail address: mihir@iitg.ernet.in (M.K. Purkait).
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© 2009 Elsevier B.V. All rights reserved.

[7]. Treatment of the chromium rich tanning effluents using UF and
NF is mostly studied [8–12] for the recovery and reuse of tanning
chemicals.

Although, the membrane-based processes are attractive, the
inherent limitation of these processes is the decline of flux. The
throughput of these processes decrease with the time of the oper-
ation because of membrane fouling and concentration polarization
(i.e., deposition/increase of concentration of solutes over the mem-
brane surface). Therefore, in order to scale up the systems, the flux
decline mechanism should properly be understood. It is well estab-
lished that the dead end filtration experiments are the most suitable
option for better fundamental understanding of flux decline mech-
anism. Several reports are available for the treatment of leather
plant effluent using membrane-based processes [3,5,6]. Various
flux decline mechanisms are proposed in the literature, e.g., osmotic
pressure governed flux decline [13,14], gel or cake layer controlled

flux decline [15,16], various steps for blocking the membrane pores,
like, complete pore blocking, standard pore blocking, intermediate
pore blocking, etc. [17,18]. Among these, one or more steps may be
involved simultaneously to cause the flux decline. In most of the
studies, it is proposed that early stage of flux decline is due to some

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:mihir@iitg.ernet.in
dx.doi.org/10.1016/j.cej.2009.03.023


276 M.K. Purkait et al. / Chemical Engineering Journal 151 (2009) 275–285

us pro

k
d
o
t
f
w
[
s
e
fl

m
a
c
a
(
l
o
c
f
p
t
a
o
n

t
s
p
r

Fig. 1. Generation of effluent from vario

ind of pore blocking, followed by cake filtration for long term flux
ecline [19–25]. Modeling studies of flux decline during MF and UF
f protein solution using these mechanisms are available in litera-
ure [19–22]. Similar type of flux decline mechanisms are studied
or MF of apple juice [23], beer [24], surimi wash water [25], waste
ater [26], humic acid [27] as well as for UF of surfactant micelles

28], cheese whey [29], natural organic matters [22], etc. Although
everal reports are available for the treatment of leather plant efflu-
nt using membrane-based processes [6–8], the identification of
ux decline mechanism as well as its quantification studies are rare.

However, the effects of process conditions on membrane perfor-
ance (permeate flux and rejection) and their dynamic behaviors

re usually non-linear in nature. Therefore, the predictions of the
onventional models are not always satisfactory. Thus there is
need for alternative methods such as artificial neural network

ANN) approach. A neural network can be used to simulate the non-
inear input/output dynamics of a process based on a time history
f process data [30]. An ANN is composed of many single elements
alled neurons. These neurons are connected to each other in dif-
erent ways and therefore formed different types of ANN. The most
opular ANN is the multi-layer feed-forward neural network where
he neurons are arranged into three layers: input layer, hidden layer,
nd output layer [31]. Feed-forward neural network usually has one
r more hidden layers, which enable the network to deal with the
on-linear and complex correlation [32,33].
Application of the membrane-based processes to treat each of
he “beam house” effluent separately is probably a costly propo-
ition. In this work, a scheme is proposed to treat the leather
lant effluent using a two-step pressure driven membrane sepa-
ation processes involving NF and RO. Detailed parametric study

Fig. 2. Proposed scheme for th
cessing stages of a typical leather plant.

is carried out using batch and continuous cross flow system. Neu-
ral network models have been used to describe the permeate flux
profiles during NF and RO of leather plant effluent dynamically
for both batch and cross flow run. It aims to predict the perme-
ate flux at different operating condition with processing time. A
multi-layer feed-forward network structure with input, output and
hidden layer(s) is used in this study. The back-propagation algo-
rithm is utilized in training of ANN models. The modeling results
showed that there is an agreement between the experimental data
and predicted values, with mean absolute errors less than 1% of the
experimental data.

2. Proposed scheme

2.1. Effluents

In a leather plant, two major effluent streams are generated from
the “wet blue” step of the processing. The leather from “wet blue”
goes to the “beam house” for several chemical consuming steps in
series; e.g., soaking, liming, defleshing, bating, pickling, etc. and the
tanning step which generates the chromium rich effluent as shown
in Fig. 1. Membrane-based separation of the mixture all the effluent
may be useful but problem arises with the retentate, which contains
concentrated toxic chromium ion. To overcome this problem and
also to use retentate sludge as manure and to reuse chromium for

further use, overall leather plant effluent is divided into two parts;
namely, (a) the common effluent from soaking to skin degreas-
ing (including seven steps), is termed as effluent 1 which does
not contain chromium; (b) the effluent from the tanning step
which contains toxic chromium metal ions, termed as effluent 2.

e treatment of effluent 1.
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Table 1
Characterization of leather plant effluent 1.

Effluent characteristic Value

COD (mg/L) 4335
BOD (mg/L) 1800
PH 3.4
ig. 3. (a) Structure of feed-forwarded network with three hidden layer and one
utput layer. (b) Methodology for ANN architecture.

reatment of effluent 2 is already discussed in the literature [8–12].
n this work, treatment of effluent 1 is addressed. Effluent 1 (devoid
f chromium) contains lots of organic and inorganic chemicals. It is
roposed that the effluent 1 is first subjected to gravity settling. The
upernatant is then subjected to coagulation by alum. This process
enerates mostly an organic sludge. The supernatant of this coagu-
ation step is then filtered by a fine filter cloth. The sludge produced
n gravity settling, coagulation and the cloth filtration is stored in
common chamber which may be used as fertilizer. The clarified

ffluent is then subjected to a two step membrane-based separation
rocesses; namely, NF followed by RO using both batch and cross
ow cell. The performance criteria of these membrane processes
re evaluated in terms of COD, BOD and the permeate flux of the
reated effluent. The permeate flux indicates the throughput (quan-
ity) of the product; whereas other properties indicate the quality
f the product. The validity of the above scheme is tested in a batch
ell due to two reasons. First, the conduction of the experimental
uns in the batch cell is easy and second, the batch cell experiments
re at the worst possible conditions. As the time of the experiment
rogresses, the bulk concentration increases and the membrane
ouling and concentration polarization becomes severe leading to
orse permeate quality. In other words, if an experimental scheme
s successful in a batch cell, in terms of the permeate quality and the
ux, then that scheme must be successful in a continuous steady
ode; either in a stirred or in a cross mode. It is envisaged that the

etentate of both the membrane processes can be recycled to the
ravity settling chamber for further processing and the final per-
Conductivity (mS) 138
TDS (g/L) 92
TS (g/L) 116
Turbidity (NTU) 157

meate of RO can be recycled back to the “beam house” for make up
water and chemicals. The schematic of the treatment of the effluent
1 is shown in Fig. 2. Once the scheme for the membrane separation
process is validated in the batch cell, cross flow experiments are
conducted in detail.

2.2. Neural network

An artificial neural network is a framework consisting of many
number of neuron like processing units. Each neuron is simulated
by the sum of the incoming weighted signals and transmits the
activated response to the other connected neuron units. Such a
network represents an efficient and parallel computational entity
and will reflect the level of simulations by different input signals.
The dynamic weights which connected neuron of different layer
continuously modified during the process of learning. Multi-layer
feed-forward neural network with back propagation algorithm is
used to train the models frequently. Neurons are arranged in three
layers: input layer, hidden layer, and output layer [31] as shown in
Fig. 3a.

Back-propagation is a special technique used for implementing
gradient-descent in weight space for a multi-layer feed-forward
network, in which the network weights are moved along the nega-
tive of the gradient of the performance function. Back propagation
refers to the manner in which the gradient is computed for non-
linear multi-layered networks. Neural networks with single and
multiple hidden layers containing a sufficient number of neurons
map accurately the input and the output of the network. Activa-
tion function and transfer function are selected according to the
problem. Network inputs and outputs are problem specific. Input
for the network is normalized, and this normalized input data is
divided for training and validation randomly. ANN model with dif-
ferent experimental conditions is tested for training and validation
data. Over training of network has to be avoided as it remembers
the input output mapping exactly rather than training network
properly. Weights are adjusted till acceptable mean square error is
achieved by training the network. Fig. 3a shows the basic structure
of multi-layer feed-forward neural network with back propagation
algorithm technique. Methodology for developing ANN architec-
ture has been explained in Fig. 3b.

3. Experimental

3.1. Effluent

Effluent 1 is collected from M/s Alison Tannery, Kolkata, India.
It is collected from the main drain, which contains all the effluent
from “wet blue” process except the chrome tanning. The charac-
terization of the effluent has been carried out and is presented in
Table 1.
3.2. Chemicals used

Potassium alum is used for the coagulation and is procured from
the local market. All the chemicals, required for the determination
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f chemical oxygen demand (COD) and biological oxygen demand
BOD), are procured from Loba Chemie India and are used without
urther treatment.

.3. Membrane

Organic polyamide membranes of molecular weight cut off
MWCO) of 200 and 400 are used for nanofiltration (NF). Thin
lm composite polyamide membrane is used for reverse osmo-
is (RO). To avoid the excess solid load over RO membrane, NF
s used first. All the membranes are procured from M/s, Genesis

embrane Sepratech Pvt. Ltd., Mumbai, India. The permeabilities
f the membrane are determined using distilled water and are esti-
ated to be 3.25 × 10−11 m/Pa s for 400 MWCO, 2.88 × 10−11 m/Pa s

or 200 MWCO and 7.52 × 10−12 m/Pa s for the RO membrane. The
ange of operating pressure for NF membrane is 414–966 kPa and
hat of for RO membrane is 828–1380 kPa.

.4. Membrane filtration cells

.4.1. Batch cell
The unstirred batch experiments are conducted in a 150-mL

ltration cell made of stainless steel. Inside the cell, a flat circu-
ar membrane is placed over a metallic support. The membrane
iameter is 4.5 × 10−2 m and the effective area of the membrane

s 15.9 × 10−4 m2. The permeating solution, from the bottom of the
ell, is collected. The cell is pressurized using a nitrogen cylinder.
he schematic of batch experimental set up is presented elsewhere
34].

.4.2. Cross flow cell
The clarified effluent is pumped by a high pressure reciprocat-

ng pump from the stainless steel feed tank to the cross flow cell
ith a rectangular channel. The effective length of the membrane

s 37.3 × 10−2 m and width is 5.2 × 10−2 m. The channel height is
etermined by the thickness of the rectangular Teflon gasket and the
hannel height is found to be 3.44 × 10−3 m. The retentate stream is
ecycled back to the feed tank. The pressure and the cross flow rate
nside the membrane channel are independently set by operating
he valves in the bypass line and that at the outlet of the membrane
ell. Permeate samples are collected from the bottom of the cell
nd are analyzed. The schematic of cross flow experimental set up
s presented elsewhere [35].

.5. Operating conditions

In the batch cell, the operating variable is the transmembrane
ressure only. The operating pressures are 414, 552 and 828 kPa
or NF experiments. For RO, operating pressures are 828, 1104 and
242 kPa. In the cross flow cell, the operating variables are the
ransmembrane pressure and the cross flow velocity. The operating
ressures for NF and RO are the same as those in the batch cell. The
ross flow rates are 30, 75 and 120 L/h. For RO runs, feed is gener-
ted by collecting the permeating solution through a NF membrane
f 400 MWCO at 828 kPa.

.6. Procedure

.6.1. Pretreatment
Effluent 1 is kept in five numbers of 500 mL capacity containers.

lum is added to each of these at the concentration of 0.2, 0.5, 1, 2

nd 3 g/L in order to obtain the optimum dose of the coagulant. The
ypical coagulation time is found to be 30 min. Once the optimum
oagulant dose is obtained, the supernatant of the gravity settled
iquor is treated with the optimum alum dose. The gravity settle-

ent is carried out in a 10-L container for 2 days. After coagulation,
ing Journal 151 (2009) 275–285

the sludge settled at the bottom and the supernatant is siphoned
out. The sludge of the gravity settling and the coagulation are mixed
up and stored for the use as a fertilizer. A fine nylon filter cloth
is then used for further clarification of the collected supernatant.
The clarified liquor is then treated by the membrane separation
processes.

3.6.2. Nanofiltration
In the membrane-based experiments, each membrane is first

compacted with distilled water using a higher pressure of the max-
imum operating pressure. The membrane permeability is estimated
from the permeate flux versus pressure data, using distilled water.
After that, the cell is charged with the clarified effluent. The dura-
tion of the batch cell experiments are of 2 h and those for the cross
flow experiments are of 1 h. The permeating solution is collected
on a digital balance on a cumulative volume basis. From the slope
of the cumulative volume versus time curve, the permeate flux is
calculated. The permeate samples are collected in regular intervals
for analysis.

3.7. Analysis

The conductivity, total dissolve solids (TDS), turbidity and pH of
all samples (feed, permeate and retentate streams at each operat-
ing conditions) are measured at room temperature using a deluxe
water and soil analysis kit, model no 191E, manufactured by Tosh-
niwal Instruments Ltd, India. Total solids (TS) of all the samples
are measured by taking a known volume of sample in a petri dish
and keeping in an oven maintained at 105 ± 2 ◦C; till complete dry-
ing of the sample. COD and BOD are determined using standard
techniques [36].

3.8. ANN procedure

In this section, detailed procedure for the approach of ANN
network is produced. Normalization of data, ANN architecture
development, training of neural network and optimal ANN con-
figuration selection has been discussed in this section. Network
stopping criteria have been elaborated by Jindal and Chauhan [37].
As the number of neurons or number of iterations increase, error
decreases and network performance improves for training and val-
idation data. Validation error starts to increase, as the number of
iterations increase, while training error continues to decrease.

3.8.1. Normalization of data
Network inputs and output vectors are scaled to a desired

numerical range for a particular transformation function, which is
to the output range of transfer function. Numerical overflows can
be avoided by normalization of input data for very large or small
weights. Log-sigmoid function is used for training of the network.
Range of the function lies in between 0 and 1, so input and output
data should be normalized to the range of transformation function
used. The normalized variable Xnorm can be represented as

Xnorm =
{

(y − 0.1)(ymax − ymin)
(0.8)

}
+ ymax; (1)

where y is the output values, ymax and ymin are the maximum and
minimum values of the output values. Input and output data are
normalized to the range of 0–1. Normalized output values contain-
ing 1 produce more error after training. So values in between the
range of 0 and 1 are used for training after normalization of the

data.

3.8.2. ANN network architecture
The manner in which the neurons of a network are structured in

various layers, and the inter-connection between neurons between
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Table 2
Experimental conditions and number of data used for training and validation of ANN
(batch cell experimental data).

Exp MWCO Pressure (kPa) TDS Training Validation

414
1 200 552 13.7 57 15

828

414
2 400 552 13.7 57 15

828

828 8.27
3 RO 1104 8.64 57 15

e
g
t
n
p
e
c
v
t

a
[
a
d
o
e
r
t
i
o
l
H
m

3

p
f
p
d
l
s
m
s
i
t
p
e
F
e

Table 3
Experimental conditions and number of data used for training and validation of ANN
(cross flow experimental data).

Exp MWCO Flow rate TMP (kPa) TDS Training Validation

414 8.27
1 400 120 552 8.64 360 36

828 9.6

414 8.27
2 400 75 552 8.64 365 36

828 9.6

414 8.27
3 400 30 552 8.64 366 36

828 9.6

828 8.27
4 RO 120 1104 8.64 161 24

1242 9.6

828 8.27
5 RO 75 1104 8.64 166 24

1242 9.6

828 8.24

experimental data is done in the second part. Cross flow experi-

T
C

A

0
0
1
2
3

1242 9.6

Total 171 45

ach layers are important in this network architecture design. In
eneral there are three fundamental classes of network architec-
ures, that single-layer, multi-layer, and recurrent feed-forward
etworks. Among these multi-layer feed-forward networks with
roper activation function is used because of its accuracy to the
xperimental data after training. Multi-layer feed-forward network
ontains one or more hidden layers in the network. Similarly among
arious activation functions log sigmoid function is used for our
raining.

Number of hidden layers and number of neurons in hidden layer
re problem specific and can be selected by trail and error method
38]. As there is no fixed method to take number of hidden layers
nd neurons for a given problem, network is trained for various hid-
en layers and number of neurons for the best results. Among these
ne hidden layer with a particular number of neurons with less
rror prediction are selected as the network architecture. Learning
ate and momentum rate are another important factors for proper
raining of the network. Rate of change of connection weights dur-
ng training indicates the learning rate. Learning rate selection is
f critical importance, as in finding the local or global error. A
arge or small learning rate does not solve a particular solution.
ence network is trained for best results with varying learning and
omentum rate by trial and error method.

.8.3. Neural network training
Both the batch and cross flow data are used for training pur-

ose. Training for batch data set (1st training data set) consists of
our inputs: membrane molecular weight cut off, trans-membrane
ressure, time and total dissolved solids (TDS). Cross flow training
ata set (2nd training data set) consists of five inputs; molecu-

ar weight cut off, trans-membrane pressure, time total dissolved
olids (TDS) and cross flow rate. The output of the network is per-
eate flux obtained from the batch and cross flow data. First and

econd training contain 216 and 1778 experimental data and shown
n Tables 2 and 3, respectively. Training network with proper archi-
ecture, learning rate, momentum factor and number of iterations

roduce proper solution to the network. Weights associated with
ach neuron are adjusted in order to produce the actual response.
or each neuron trained response is compared with the original
xperimental data and is produced in graphical form.

able 4
haracterization of the clarified effluent after different alum doses.

lum dose (kg/m3) COD (mg/L) BOD (mg/L) Tu

.2 2970 1350 7

.5 2880 1200 6

.0 2280 850 4

.0 2282 854 4

.0 2284 856 3
6 RO 30 1104 8.64 180 24
1242 9.6

Total 1598 180

The number of hidden layers and neurons within each layer can
be varied according to the complexity of the problem data. In this
study, a feed-forward neural network model with varying hidden
layers and number of neurons in the network are used. As num-
bers of hidden layers are increased network error is increasing, so
training has been carried out with single hidden layer with varying
neurons in the layer. The number of neurons used for training is two
to seven for first set and in second set hidden layers and number of
neurons in hidden layer are changed.

For a given set of inputs to the network, output layer response
is calculated for each neuron and compared with the correspond-
ing desired experimental output response. The weights associated
with the network are adjusted in such a way that errors in each
neuron compared above are minimized. Error minimization pro-
cess is achieved using gradient descent rule [39]. Network structure
with associated error, learning rate, momentum factor and number
of neurons are presented in subsequent section. The prediction of
accuracy of the ANN models was compared using Mean square error
(MSE) of the network. Starting with a large MSE value, the perfor-
mance of the network is observed and depending upon the accuracy
required MSE value is reduced and trained initially for network’s
convergence.

4. Results and discussion

This section is divided into four parts. In the first part, pretreat-
ment data of effluent 1 is reported and discussed. Analysis of batch
mental data is presented and explained well in the third part. ANN
is used to predict the flux data of both batch and cross flow run for
NF and RO membrane. Comparison of the performance of exclusive
NF and NF followed by RO is done in the last part.

rbidity (NTU) TS (kg/m3) TDS (g/L) pH

2.5 16.0 14.3 6.8
5.0 14.0 13.0 6.9
3.8 14.0 12.8 7.7
0.1 13.5 12.1 8.3
8.2 13.5 11.9 8.6
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Fig. 4. (a) Permeate flux decline profiles along with ANN training mode data using
200 MWCO membrane in the batch cell under various operating pressures. (b) Per-
meate flux decline profiles along with ANN training mode data using 400 MWCO
membrane in the batch cell under various operating pressures. (c) Permeate flux
decline profiles along with ANN training mode data using RO membrane in the batch
cell under various operating pressures.

Table 5
Properties of the permeating solution from RO at the end of 1 h of operation under
batch mode.

Properties Feed 828 kPa 1104 kPa 1242 kPa

pH 8.2 8.2 8.2 8.2

Conductivity (mS) 18.1 13.0 13.3 14.3
TDS (kg/m3) 12.0 8.3 8.6 9.6
COD (kg/m3) 378 72 108 128
BOD (kg/m3) 154 30 45 54

4.1. Pretreatment

The supernatant of the pretreated effluent 1 is taken out and
various properties, e.g., pH, conductivity, TDS, TS, turbidity, BOD and
COD are measured. These properties of the alum treated effluent
with the alum dose are tabulated in Table 4. It is clear from Table 4
that COD, BOD, turbidity, TS decrease sharply with the increase in
alum dose up to 1.0 g/L; but, the decrease is marginal for higher
dosages of alum. Therefore, 1.0 g/L is considered as the optimum
alum dose. Further, pH at this level of alum concentration is almost
neutral.

After establishing the optimum alum dose, the effect of gravity
settling is investigated. It is observed that the gravity settlement
of 2 days results in a decrease in COD from 4335 to 3768 mg/L.
Therefore, the optimum alum dose is applied to the “gravity set-
tled” solution and it results a COD and BOD of 864 and 388 mg/L,
respectively; after the sludge separation. The amount of sludge gen-
erated is 102 g/L after drying, which can be used as a fertilizer. The
other properties are found to be in the same range of those with
optimally alum treated solution without the gravity settling. There-
fore, the effluent 1 is first subjected to the gravity settling, followed
by the alum treatment. The supernatant is then treated with the
subsequent membrane filtration after a coarse filtration by a fine
cloth.

4.2. Batch cell run

4.2.1. Nanofiltration
Two membranes, namely 200 and 400 MWCO are used sep-

arately to treat the clarified effluent 1. From the batch cell
experiments, a better NF membrane is selected.

The permeate flux profiles for 200 and 400 MWCO membrane
are shown in Fig. 4a and b, respectively, at different operating pres-
sures. It may be observed from both the figures that there is a
decline of the flux with time due to the membrane fouling and con-
centration polarization. There is 76% decline in flux (compared to
the pure water flux) for 2 h of operation at 828 kPa pressure for
400 MWCO (membrane). For higher operating pressure, the flux
values are more due to the increase in the available driving force.
It may be observed that after 2 h of operation, the permeate flux

−6 −6 3 2
increases from about 4.0 × 10 to 6.5 × 10 m /m s when pres-
sure rises from 414 to 828 kPa for 400 MWCO membrane. Compared
to 400 MWCO membrane, the permeate flux values are always
lower for 200 MWCO membranes as expected. For example, at
828 kPa pressure, the permeate flux for 400 MWCO membrane is

Table 6
ANN results for batch experimental data.

Sl. No. Number of
neurons

Mean square
error (×104)

Number of
iterations

Learning
rate

Momentum
rate

1 2 2.03 200 0.3 0.1
2 3 1.84 180 0.3 0.1
3 4 8.8 190 0.3 0.1
4 5 0.83 200 0.3 0.1
5 6 0.53 210 0.3 0.1
6 7 0.75 230 0.3 0.1
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Fig. 5. (a) Permeate flux decline profiles along with ANN prediction using
200 MWCO membrane in the batch cell under various operating pressures. (b) Per-
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eate flux decline profiles along with ANN prediction using 400 MWCO membrane
n the batch cell under various operating pressures. (c) Permeate flux decline pro-
les along with ANN prediction using RO MWCO membrane in the batch cell under
arious operating pressures.
bout 17% higher than that of 200 MWCO membrane at the end of
he operation.

It is observed that the permeate conductivity and TDS increases
arginally with time of operation. This is obvious as the filtration

rogresses, more inorganic solutes permeate through the mem-
ing Journal 151 (2009) 275–285 281

brane resulting in increasing in conductivity and TDS. Interestingly,
at a fixed time, the conductivity and TDS is less for higher pressure.
This may be due to the fact that the deposited layer of the organic
solutes at the membrane surface gets more compact at higher pres-
sure allowing less conductive solute to permeate. Although, it may
be noted here, that the range of variation of conductivity and TDS
is quite small. For example, conductivity varies between 14.2 and
17.2 mS and that for TDS is 9.5–12.5 g/L. At the end of 2 h of opera-
tion, the permeate conductivity and TDS are quite close to the feed
values. For example, the feed conductivity is 18.4 mS; whereas, for
828 kPa pressure, permeate conductivity starts from 14.2 and after
2 h it is about 16 mS. For 414 kPa, it starts from 16 mS and reaches to
about 17.4 mS after 2 h. Similar trend is observed for TDS. This indi-
cates that the retention of the inorganic solutes by the membrane
is quite low. The flux decline due to concentration polarization is
mostly due to the presence of the organic solutes in the clarified
effluent. Similar trends for TDS and conductivity are obtained for
200 MWCO membrane.

The most important permeate properties are COD and BOD.
Since the COD and BOD of the permeating solution at the end of the
batch experiments are measured. It is observed that both the BOD
and COD increase with increase in pressure and the rate of increase
slows down at higher pressure. For example, at 414 kPa pressure, the
COD and BOD values are about 100 and 30 mg/L, which are within
the environmental regulation (permissible limits for COD is 250
and that for BOD is 30 mg/L). For higher pressure these values are
quite high. So, for NF using 400 MWCO (membrane), 414 kPa may be
suitable operating pressure; but, this results in a low flux of about
3.5 × 10−6 m3/m2 s. If a higher operating pressure is selected, then
BOD and COD go beyond the permissible limit. On the other hand for
200 MWCO (membrane), COD values are less than the permissible
limit but BOD values are always greater than the permissible lim-
its. Only for 414 kPa pressure, BOD is close to that limit. However,
at 414 kPa pressure, the permeate flux for 200 MWCO membrane
is about 8% lower than that of 400 MWCO membrane. Therefore,
it is envisaged that NF by 400 MWCO at 828 kPa may be used to
obtain the maximum permeate flux; and the permeating solution
may then be subjected to low pressure reverse osmosis (RO) to
bring down both the BOD and COD levels. This is discussed in the
subsequent section.

4.2.2. NF followed by RO
The permeate flux decline of the RO is presented in Fig. 4c at

the three pressures; namely, 828, 1104 and 1242 kPa. It may be
noted that the flux decline is not as severe as that of NF, since the
NF membrane retains most of the organic solutes. The flux decline
shows the usual trend, i.e., the flux is more at higher pressure. At
1242 kPa pressure, the flux is about 1.8 × 10−6 m3/m2 s compared
to 1.0 × 10−6 m3/m2 s at 828 kPa. The variation of other properties,
e.g., pH, conductivity etc. are shown in Table 5 after 1 h of opera-
tion (half run). It shows that pH remains same for three pressures.
Conductivity and TDS increase marginally with pressure but COD
and BOD show definitely increasing trend with pressure. The final
values of COD and BOD at the end of the experiments (after 2 h) are
160 mg/L and 68 mg/L, respectively, at 1242 kPa pressure. It may be
noted here that the BOD value is higher than the permissible level.
The batch cell experiments result worst performance, as the feed
concentration increases with time; the polarization is the severest.
Hence, for a continuous cross flow mode, the permeate flux as well
as qualities are expected to improve. Having established the mem-
brane filtration scheme, i.e., 400 NF followed by RO, the said scheme

is then studied in detail in the continuous cross flow systems and
are reported in the subsequent section.

Development of ANN model involves training and prediction
steps. This batch cell containing flux data (total 216) of nanofiltra-
tion (MWCO of 200, 400) and NF followed by RO in our study was
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Fig. 6. (a) Experimental permeate flux profiles along with ANN training mode data
using 400 MWCO membrane in the cross flow cell under various operating pressures
and at a cross flow rate of 30 L/h. (b) Experimental permeate flux profiles along with
ANN training mode data using 400 MWCO membrane in the cross flow cell under
various operating pressures and at a cross flow rate of 75 L/h. (c) Experimental per-
meate flux profiles along with ANN training mode data using 400 MWCO membrane
in the cross flow cell under various operating pressures and at a cross flow rate of
120 L/h.

Fig. 7. (a) Experimental permeate flux profiles along with ANN training mode data
using RO membrane in the cross flow cell under various operating pressures and
at a cross flow rate of 30 L/h. (b) Experimental permeate flux profiles along with
ANN training mode data using RO membrane in the cross flow cell under various
operating pressures and at a cross flow rate of 75 L/h. (c) Experimental permeate
flux profiles along with ANN training mode data using RO membrane in the cross
flow cell under various operating pressures and at a cross flow rate of 120 L/h.
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Table 7
ANN results for cross flow experimental data.

Sl. No. Number of
neurons

Mean square
error (×104)

Number of
iterations

Learning
rate

Momentum
rate

1 3 4.67 190 0.3 0.2
2 4 4.33 180 0.3 0.2
3 (2,1) 2.1 180 0.35 0.25
4 (2,2) 2.40 160 0.35 0.25
5 (3,2) 5.8 170 0.35 0.25
6 (3,3) 2.12 180 0.35 0.25
7 (4,3) 4.26 190 0.35 0.25
8 (4,4) 7.33 210 0.35 0.25
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Fig. 8. (a) Experimental permeate flux profiles along with ANN prediction using
400 MWCO membrane in the cross flow cell under various operating pressures and
at a cross flow rate of 30 L/h. (b) Experimental permeate flux profiles along with
9 (5,4) 4.71 200 0.35 0.25
10 (5,5) 4.15 180 0.35 0.25
11 (6,5) 3.71 230 0.35 0.25

rained with 171 flux data and remaining 45 flux data for predic-
ion. Table 2 explains the experimental conditions and number of
ata used for training and prediction. Learning rate and momen-
um rate are varied from 0 to 1. Selection of proper learning factor,

omentum factor, number of neurons in hidden layer, and number
f iterations influence the training and validation results.

Different configurations of ANN model have been tried and there
esults are presented in Table 6. It may be observed from Table 6
hat the configuration 4-7-1 gives the minimum mean square error
MSE). The training data set responses with different experimen-
al conditions after training are presented in Fig. 4a and b for NF
nd in Fig. 4c for NF followed by RO data. In the figures, symbols
epresent the experimental data and the dotted lines represent the
esults of ANN model. It is clear from the figures that the nature
f permeate flux under various experimental conditions is success-
ully explained by the ANN model. Predicted values are shown in
ig. 5a–c, respectively for 200 MWCO, 400 MWCO and 400 MWCO
ollowed by RO membrane. From figures it is clearly observed that
xperimental data is closely matching with the results of ANN
odel.

.3. Cross flow run

.3.1. Nanofiltration
Once the concept of the separation in an unstirred batch cell

s successfully validated, the effluent is then subjected to a steady
tate cross flow mode. A detailed parametric study is also conducted
o observe the effects of the operating conditions on the permeate
ux and permeate quality.

.3.2. Nanofiltration using 400 MWCO
As stated earlier, the clarified effluent is subjected to 400 MWCO

F (membrane) in the cross flow cell. The variation of the perme-
te flux with operating time at three different pressure is shown in
ig. 6a–c for the cross flow rates of 30, 75 and 120 L/h, respectively.
rom figures, it may be observed that the permeate flux increases
ith pressure as discussed earlier but remains almost constant

hrough out the operating time. For example, with increase of pres-
ure from 414 to 828 kPa, the steady state flux increases from about
.8 × 10−6 to 1.5 × 10−6 m3/m2 s (almost 100% increase). The steady
tate flux at 120 L/h and 828 kPa is about 1.5 × 10−5 m3/m2 s, which
s one order of magnitude higher than the batch cell flux at the
nd of 2 h. From Fig. 6a–c it may be seen that the permeate flux
s almost independent of cross flow rate within the experimental
ange considered herein.

BOD and COD of permeate with pressure is also measured. It is

bserved that COD increases slowly with pressure due to increase
f driving force. For example, at 30 L/h, COD increases from 128
o 142 mg/L as pressure increases from 414 to 828 kPa. The effects
f cross flow rate are prominent in this case. At 828 kPa pressure,
OD decreases from about 142 to 92 mg/L as flow rate increases
ANN prediction using 400 MWCO membrane in the cross flow cell under various
operating pressures and at a cross flow rate of 75 L/h. (c) Experimental permeate
flux profiles along with ANN prediction using 400 MWCO membrane in the cross
flow cell under various operating pressures and at a cross flow rate of 120 L/h.

30–120 L/h. It may be noted here that permeate COD for all the

operating conditions is well within the permissible limit, i.e., below
250 mg/L. The trends of BOD with pressure and flow rate are same as
that of COD. But, it is found that apart from the operating conditions
(414 kPa and 120 L/h) all BOD values are above 30 mg/L. In fact, the
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Fig. 9. (a) Experimental permeate flux profiles along with ANN prediction using RO
membrane in the cross flow cell under various operating pressures and at a cross flow
rate of 30 L/h. (b) Experimental permeate flux profiles along with ANN prediction
using RO membrane in the cross flow cell under various operating pressures and
at a cross flow rate of 75 L/h. (c) Experimental permeate flux profiles along with
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NN prediction using RO membrane in the cross flow cell under various operating
ressures and at a cross flow rate of 120 L/h.
owest BOD is at 30 mg/L, which is the permissible limit. Therefore,
lthough the permeate COD values of NF are within the permissible
imit but it is desirable to bring down the BOD below the permissible
imit. Therefore, one more filtration step using RO of the permeating
olution generated from NF is required.
Fig. 10. Comparison of the performance of 400 MWCO NF membrane and
400 MWCO NF membrane followed by RO membrane. Operating pressure, 828 kPa
for 400 MWCO NF membrane and 1242 kPa for RO membrane.

4.3.3. NF followed by RO
The variations of the permeate flux with time at three differ-

ent operating pressures using RO membrane are shown in Fig. 7a–c
for various cross flow rates. The steady state flux at 828 kPa and
120 L/h cross flow rate is about 6 × 10−6 m3/m2 s, which is almost
three times to that of the batch cell data at the end of the opera-
tion. The effect of pressure is significant and the steady state flux
increases from 4.2 to 6 × 10−6 m3/m2 s as the pressure increases
from 828 to 1242 kPa. It is also seen from the figures that the cross
flow rate considered herein has a marginal effect on permeate flux.

The CODs and BODs are measured at the end of each experiment.
It is found that although COD increases slightly with pressure, but
all the values are well within the permissible limit. All the BOD val-
ues are less than the permissible values except that at the cross
flow rate of 30 L/h. The COD and BOD values decrease with the
cross flow rate significantly. For example, at 1242 kPa pressure, COD
decreases from about 90 to 38 mg/L; whereas, BOD decreases from
40 to 20 mg/L, when the cross flow rate increases from 30 to 120 L/h.
Therefore, 1242 kPa pressure and 120 L/h flow rate gives the highest
permeate flux and lowest BOD and COD values (well under the spec-
ified limits). For NF using 400 MWCO and NF followed by RO, a total
number of 1778 experimental data are taken of which 1598 data are
used for training purpose and remaining 180 data are used to com-
pare the ANN predicted results. Table 3 explains the experimental
conditions and number of data used for training and prediction.

Different configurations of ANN model have been tried and there
results are presented in Table 7. Minimum mean square error is
observed when 6-5 neurons are in the first and second hidden
layers. So from training configuration 4-6-5-1 gives the minimum
mean square error (MSE) for the network. The training data with
different experimental conditions and the ANN results after train-
ing are presented in Fig. 6a–c for NF using 400 MWCO and Fig. 7a–c
for NF followed by RO. Similarly ANN prediction data are shown in
Fig. 8a–c for NF using 400 MWCO and Fig. 9a–c for NF followed
by RO. From Fig. 8a–c and Fig. 9a–c it can be clearly observed
that experimental data is closely matching with the results of ANN
model for both NF using 400 MWCO and NF followed by RO.

4.4. Comparison of the performance of exclusive NF and NF
followed by RO

The comparative performance data of NF using 400 MWCO
membrane and NF (400 MWCO) followed by RO is shown in Fig. 10.
The operating pressures are 828 kPa and 1242 kPa for NF and RO,

respectively. The cross flow rate is 120 L/h. It may be observed from
Fig. 10 that COD in both the processes are within the permissible
limit. BOD after 400 MWCO NF process is beyond the permissible
limit. On the other hand, the permeating solution of RO has a BOD
well within the permissible limit. In order to meet the permissible
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imit of the treated effluent, one has to sacrifice the permeate flux.
rom Fig. 10, it is clear that the permeate flux is 1.53 × 10−6 m3/m2 s
fter the NF operation and the flux is about 0.65 × 10−6 m3/m2 s
fter RO. Therefore, the clarified leather effluent may safely be
reated using NF followed by RO so that the COD and BOD of the
ermeate fall safely within the permissible limit and the treated
tream can be discharged or reused.

. Conclusion

In this work, a schematic is proposed to treat the leather
lant effluent using membrane separation technique. Experimen-
al investigation is performed to check the validity of the proposed
cheme and results are interpreted using ANN technique. All the
ffluent coming out from various process streams of a leather plant
effluent 1), except chrome tanning, is treated with a series of
retreatment processes, namely gravity settling, coagulation and
loth filtration. The optimum alum dose for coagulation is deter-
ined and found to be 1.0 g/L. The supernatant is then subjected

o 400 MWCO NF followed by RO membrane. A systematic para-
etric study is conducted to observe the effects of the operating

ariables on the permeate flux and quality; both for NF and RO
nder batch and cross flow mode of operation. A 400 MWCO mem-
rane is found to be more suitable between 200 and 400 MWCO
embranes. The suitable operating pressure for NF is 828 kPa and

hat for RO is 1242 kPa. The cross flow rate 120 L/h is found suitable
or both the cases. The permeate BOD and COD of the treated efflu-
nt is found to be well within the permissible limit. The possibility
f artificial neural network approach is investigated to predict per-
eate flux for both batch and cross flow run. The optimal model,
hich consisted of two hidden layer is able to predict permeate
ux with mean absolute errors less than 1%. Also the validity of
hese models has been tested with very good results for unused
ata at different experimental conditions. Therefore, it is unneces-
ary to carry out extensive pilot plat testing for collection of data.
he developed model will be able to interpolate the process vari-
bles at other conditions of interest, with potential great savings in
ime and cost.
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